An o-minimal Szemerédi-Trotter theorem

نویسندگان

  • Saugata Basu
  • Orit E. Raz
چکیده

We prove an analog of the Szemerédi-Trotter theorem in the plane for definable curves and points in any o-minimal structure over an arbitrary real closed field R. One new ingredient in the proof is an extension of the well known crossing number inequality for graphs to the case of embeddings in any o-minimal structure over an arbitrary real closed field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Szemerédi-Trotter theorem in the complex plane

This paper generalizes of the Szemerédi-Trotter theorem to the complex plane. Szemerédi and Trotter proved that the number of point-line incidences of n points and e lines in the real Euclidean plane is O(n2/3e2/3 + n + e). This bound is tight. Although several short proofs were found to this theorem [14, 12], and many multidimensional generalizations were given, no tight bound has been known s...

متن کامل

Cutting lemma and Zarankiewicz's problem in distal structures

We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in ominimal expansions of fields. Using it, we generalize the results in [10] on the semialgebraic planar Zarankiewicz problem to arbitrary o-minimal structures, in particular obtaining an o-minimal generalizatio...

متن کامل

A Szemeredi-Trotter type theorem in $\mathbb{R}^4$

We show that under suitable non-degeneracy conditions, m points and n 2–dimensional algebraic surfaces in R satisfying certain “pseudoflat” requirements can have at most O ( mn + m + n ) incidences, provided that m ≤ n2− for any > 0 (where the implicit constant in the above bound depends on ), or m ≥ n. As a special case, we obtain the Szemerédi-Trotter theorem for 2–planes in R, again provided...

متن کامل

Szemerédi-Trotter type theorem and sum-product estimate in finite fields

We study a Szemerédi-Trotter type theorem in finite fields. We then use this theorem to obtain an improved sum-product estimate in finite fields.

متن کامل

Generalizations of the Szemerédi-Trotter Theorem

In this paper, we generalize the Szemerédi-Trotter theorem, a fundamental result of incidence geometry in the plane, to flags in higher dimensions. In particular, we employ a stronger version of the polynomial cell decomposition technique, which has recently shown to be a powerful tool, to generalize the Szemerédi-Trotter Theorem to an upper bound for the number of incidences of complete flags ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.07362  شماره 

صفحات  -

تاریخ انتشار 2016